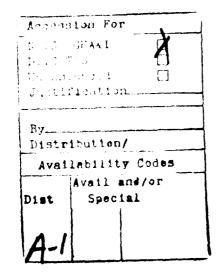
		· ,				Ď
AD-A211 241	DOCUMENTATIO	N PAGE			Form Approved UMB No. 0704-0	
TA REPORT SECURITY CLASSIFICATION		16 RESTRICTIVE	MARKINGS	17		Maz
(U) Za SECURITY CLASSIFICATION AUTHORITY	. <u></u>	3 DISTRIBUTION		OF REPORT		LAPT
N/A 25 DECLASSIFICATION / DOWNGRADING SCITES N/A	DULE	Dist	tribution	Unlimite	ed	
4 PERFORMING ORGANIZATION REPORT NUN		5 MONITORING	ORGANIZATION	N REPORT NU	JMBER(S)	C
University of California, Be			· · · · · · · · ·		-11	
6a NAME OF PERFORMING ORGANIZATION University of California	6b OFFICE SYMBOL (If applicable) N/A	7a NAME OF MO Office o	onitoring or of Naval R		FLE	-989
6C ADDRESS (City, State, and ZIP Code)	······································	76 ADDRESS (Ci	ty, State, and 2	PIP Code)		
Department of Chemical Engin University of CA, Berkeley,	U	1	Quincy St. on, VA 222		<u> </u>	les -
Ba NAME OF FUNDING/SPONSORING ORGANIZATION Office of Naval Research	8b OFFICE SYMBOL (If applicable)	9 PROCUREMEN	11 INSTRUMENT 87-K-0.347	IDENTIFICAT	IION NUMBER	
Re-ADDRESS (City, State, and ZIP Code)	ONR			RERS		
800 N. Quincy St. Arlington, VA 22217-5000		PROGRAM ELEMENT NO 61153N	PROJECT NO	1ASF NO 422c00	WORK U ACCESSIC	
11 TITLE (Include Security Classification)			1			{
Pressure-Temperature Effects	on Thermophilic	Archaebacte	eria			
12 PERSONAL AUTHOR(S) Clark, Do	ouglas S.					
Ha TYPE OF REPORT		14 DATE OF REPO 1989, Au)RT (Year, Mon Lgust 8	th, Day) 15	6 PAGE COUNT	
16 SUPPLEMENTARY NOTATION	18 SUBJECT TERMS (
FIELD GROUP SUR-GROUP	Archaebacter Hydrothermal			cogenase	, Deep-Sea	
19 ABSTRACT (Continue on reverse if necessa	iry and identify by block n	umber)		<u></u>		
The marine archaebacterium Me helium to investigate the effect of pressure and 90°C were accelerated by pressure t However, growth and methanogenesis v	re on the behavior of a d up to 750 atm, but grow were uncoupled above	leep-sea thermo wth was not obse 90°C, and the hi	phile. Methan erved above 9 igh-temperati	nogenesis a 10°C at eith ure limit fo	nd growth at bo ther 7.8 atm or 2: for methanogene	th 86°C 50 atm. sis was
increased by pressure. Substantial meth observed at 94°C and 7.8 atm.	ane formation was evid	lent at 98°C and	i 250 atm wh	iercas no m	nethane formati	on was
We have also constructed a nove	el bioreactor suitable fo	r precise studies	of enzymic r	eactions at	clevated tempe	ratures
and pressures. Initial studies in this bio		•	•			
crude extracts of <i>M. jannaschii</i> is more th Finally, we have purified a single	han tripled by an increa	se in pressure fro	om about 7.5	atm to 260) atm.	
20 DISTEBUTION/AVAILABILITY OF ABSTRAC	^ I	21 ABSTRACT SE				
22a DAME OF RESPONSIBLE INDIVIDUAL Dr. Bernard J. Zahuranec		225 TELEPHONE (202) 696-		ode) 22(() 0]	FFICE SYMBOL	
UD Form 1473, JUN 86	Previous editions are	obsolete.	SECURI	TY CLASSIFIC	ATION OF THIS PA	AGE

S/N 0102-LF-014-6603

89


FINAL REPORT

Contract:	N00014-87-K-0347
<u>Title:</u>	Pressure-Temperature Effects on Thermophilic Archaebacteria
<u>P.I.:</u>	Douglas S. Clark
	Department of Chemical Engineering
	University of California
	Berkeley, CA 94720

Period of Performance: 3/1/87 - 2/28/89

Table of Contents

		Page
I.	Project Goals	2
II.	Summary of Accomplishments	2
	A. Pressure-Temperature Effects on Methanococcus jannaschii	2
	B. Hydrogenase Activity at Elevated Pressure	4
	C. Hydrogenase Purification	4
III.	Summary and Plans	5
IV.	Publications	6
V .	Presentations	6
VI.	Personnel Supported	6

1

I. Project Goals

The primary objective of this project was to investigate the interaction of temperature and pressure in the heat tolerance of *Methanococcus jannaschii*, an extremely thermophilic marine archaebacterium isolated from a deep-sea hydrothermal vent. Toward this end, it was necessary to expand the operating range and analytical capabilities of a high temperature-pressure bioreactor previously constructed in our laboratory.

II. Summary of Accomplishments

A. Pressure-Temperature Effects on Methanococcus jannaschii

Initial studies focused on the growth and methane production of *Methanococcus jannaschii*, an extremely thermophilic methanogen isolated from a deep-sea "white smoker" chimney ($21^{\circ}N$ East Pacific Rise at a depth of 2,610 m). Using a specialized bioreactor designed for high temperatures and pressures, we have shown that *M. jannaschii* grows nearly 5 times faster at 750 atm than at 7.8 atm (Table 1 and Figure 1), and that the maximum temperature for methane production is extended from 92°C at 7.8 atm to 98°C at 250 atm, the pressure at the vent site (Figure 2). No growth was observed above 90°C at either 7.8 atm or 250 atm, however, indicating that methane production and cell growth are uncoupled at temperatures above 90°C.

Temperature (⁰ C)	7.8	Pressure 250	(atm) 500	750
86	0.5 ± 0.1	0.96 ± 0.04	1.8 ± 0.2	2.36 ±0.01
90	0.26 ± 0.03	0.5 ± 0.1	Not measured	0.83

Table 1. Specific growth rates for methanogenesis (hr^{-1}) of *M. jannaschii* as a function of temperature and pressure. Values are averages from two parallel cultures, except for the rate at 90°C and 750 atm, which was measured once. The lag phase in this particular case lasted nearly 7 days; in contrast, duplicate experiments at 90°C and 500 atm were carried out for only 5 days, during which time no methane was observed.

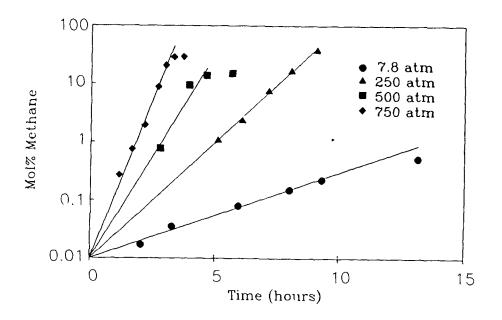


Figure 1. Effect of pressure on methane production by M. jannaschii at 86°C.

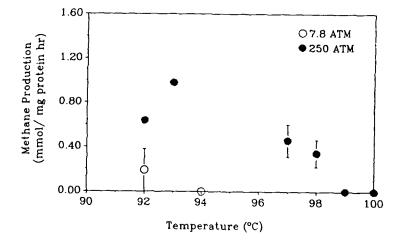


Figure 2. Methane production by *M. jannaschii* as a function of temperature and pressure. In each experiment the partial pressure of the substrate gas was 7.8 atm. Production rates were determined from straight-line fits of the methane production data collected over a minimum of 2 μ ^r. All values are averages of at least two parallel cultures; the production rate at 93°C is the average of three ru: fean values with standard deviations ≤ 0.05 mmols mg⁻¹ hr⁻¹ are shown without error bars. Protein concentrations at each temperature in each run were determined from at least 2 samples collected at least 3 hr apart. The mean deviation of each average protein concentration was less than 12%.

B. Hydrogenase Activity at Elevated Pressure.

A second bioreactor originally designed for enzyme assays at high temperatures and pressures has been used to study hydrogenases. In preliminary studies of pressure effects on hydrogenase activity, methylviologenreducing hydrogenase activities of cell lysates were measured at 86°C and at ca. 8.5 and 250 atm. Representative results are presented in Table 2. In each case, the partial pressure of the hydrogen substrate was about 8.5 atm, and the remaining pressure in the high-pressure assays was obtained by adding helium. Thus, the initial concentration of each gaseous substrate in the liquid medium was nearly the same under all conditions and the observed pressure effect was not related to substrate solubility.

Pressure (atm)	6.5 - 8.5	250 - 264	
Reaction rate at 86⁰C	52.7 ± 7.2	171 ± 23	
$\left(\frac{\mu mol \ MV \ reduced}{mg \ protein \ min}\right)$			

Table 2. Methyl viologen (MV) reduction by hydrogenase(s) in crude extracts of *Methanococcus jannaschii*. Reaction rates are expressed per mg of total protein as determined by the Bio-Rad microassay technique. The low-pressure rate is the average obtained from 5 samples; the high-pressure rate is the average obtained from 3 samples. The methyl viologen concentration in each assay was 1.1 ± 0.1 mM, and the partial pressure of hydrogen was 7.5 ± 1.0 atm. Pressures above 8.5 atm were obtained by adding helium.

For each assay, cell-free extract of *M. jannaschii* was first reduced in TRIS buffer, then added to the preheated vessel and allowed to equilibrate with approximately 8.5 atm of hydrogen for 15 minutes. Methylviologen was then rapidly injected with pressurizing helium to a final concentration of 1.2 mM, and its reduction by hydrogenase monitored at 590 nm with a fiber-optics probe. Data collection was initiated within 5 seconds of substrate addition. As shown in Table 2, the average methylviologen-reducing hydrogenase activity was increased over 3-fold by increased pressure.

C. Hydrogenase Purification

Hydrogenases have been purified from many organisms under aerobic conditions and then deoxygenated with restoration of activity, and we have recently demonstrated that such an approach is suitable for hydrogenases from *M. jannaschii* as well. We have recently purified a single hydrogenase from *M. jannaschii* 40-fold to apparent homogeneity (Figure 3).

Native polyacrylamide electrophoresis gels of crude extract revealed three major hydrogenase bands, indicating that *M. jannaschii* contains at least two hydrogenases (the bottom band of lane 1 could be a distinct hydrogenase or a component of one of the top two hydrogenases). Indeed, several other methanogens have been shown to contain two or three distinct hydrogenases. One type of hydrogenase reduces both the methanogen redox coenzyme F_{420} and the dye methylviologen, whereas the other type reduces only methylviologen. We have

Figure 3. Hydrogenase species of *M. jannaschii* in 4% polyacrylamide gels after electrophoresis. (1) Activity bands of aerobic crude extract following treatment with tetrazolium activity stain. (2) Activity band of hydrogenase isolated from crude extract by elution from a DEAE-Sepharose column, ammonium sulfate precipitation, and preparative electrophoresis. (3) Hydrogenase-containing sample prepared as in (2) and stained with Coomassie Blue.

not yet determined which type of hydrogenase we have purified; however, based on the electrophoresis results of Figure 3, the different hydrogenases of *M. jannaschii* are resolvable and we propose to isolate at least the top two to homogeneity. In addition, hydrogenases will be purified from *M. thermolithotrophicus* to compare the effects of pressure on hydrogenases from methanogens of deep-sea and shallow marine environments.

III. Summary and Plans

These experiments have demonstrated the favorable effects of pressure on the deep-sea thermophile, *M. jannaschii*, and its hydrogenase enzyme(s). Future work will examine pressure-temperature relationships in the growth and productivity of thermophilic archaebacteria isolated from two deep-sea hydrothermal vents (i.e., vent sites along the Juan de Fuca Ridge and at 21^o N East Pacific Rise) and from geothermal fluids. Of particular interest are experiments that simulate the natural environments and chemical compositions of hydrothermal

vent fields and geothermal wells. We will also examine pressure and temperature effects on the structure and function of hydrogenases and proteases isolated from extreme thermophiles. For these studies two high pressure-temperature bioreactors have already been constructed. These reactors will be employed for precise analyses of organisms and enzymes under extreme conditions, and can also be used to optimize laboratory-scale bioprocesses involving thermophilic species.

IV. Publications

E.L. Almond, A.J. Clark, and D.S. Clark, "Complementation of a <u>thr-1</u> Mutation of <u>Escherichia coli</u> by DNA from the Extremely Thermophilic Archaebacterium <u>Methanococcus jannaschii</u>", Appl. Microbiol. Biotechnol., 30, 148 (1989).

J.F. Miller, N.N. Shah, C.M. Nelson, J.M. Ludlow, and D.S. Clark, "Pressure-Temperature Effects on the Growth and Methane Production of the Extreme Thermophile <u>Methanococcus jannaschii</u>," Appl. Environ. Microbiol., 54, 3039 (1988).

J.F. Miller, C.M. Nelson, J.M. Ludlow, N.N. Shah, and D.S. Clark, "High Pressure-Temperature Bioreactor: Assays of Thermostable Hydrogenase with Fiber Optics," Biotechnol. Bioeng., in press.

V. Presentations

J.F. Miller, N.N. Shah, J.M. Ludlow, and D.S. Clark, "Pressure Effects on the Function of Thermostable Hydrogenase and the Extreme Thermophile <u>Methanococcus jannaschii</u>," AIChE Annual Meeting, New York City, New York, November, 1987.

J.F. Miller, J.M. Ludlow, and D.S. Clark, "A Novel Bioreactor for Studying the Structure and Function of Enzymes at Extreme Temperatures and Pressures", poster presented at Enzyme Engineering IX, Santa Barbara, California, October 1987.

J.F. Miller, N.N. Shah, and D.S. Clark, "Pressure-Temperature Relationships in the Growth of <u>Methanococcus</u> <u>jannaschij</u>, An Extremely Thermophilic Methanogen," AIChE Summer Meeting, Minneapolis, Minnesota, August 1987.

VI. Personnel Supported

Dr. Jay Miller, Post-doc

Mr. Nilesh Shah, Graduate Student

March 1987 - February 1988 February 1988 - February 1989